Vectorial wall shear stress calculations in vessel structures using 4D PC-MRI

نویسندگان

  • Wouter V Potters
  • Pim van Ooij
  • Ed vanBavel
  • Aart Nederveen
چکیده

Methods Velocity data were corrected for aliasing and phase offsets and subsequently filtered using a median filter. Inward unit normal vectors were determined on the wall, after which a coordinate transformation was performed for each point at the wall such that the normal vector coincided with the z-axis of the transformed coordinate system. Velocities at fixed points along the normal were calculated using natural 3D interpolation in the original data. Any perpendicular velocity components were removed as only tangential velocity components contribute to the viscous forces at the wall. Smoothing splines were then fitted to the xand yvelocity components along the inward unit normals. The xand y-derivatives at the vessel wall were derived analytically and multiplied with the viscosity, which resulted in the WSS. Finally, all WSS vectors were transformed back to the original coordinate system. This method was validated using a synthetic dataset of a rigid straight tube (diameter 6mm) with parabolic flow, in which the theoretical WSS could be derived analytically (Poiseuille). Effects of resolution, segmentation errors and noise were assessed using this phantom data. Secondly the algorithm was tested in in-vivo PCMRI data. In vivo PC-MRI of the common carotid artery was performed on a 3T MRI system (Philips Healthcare, Best, The Netherlands) using a dedicated 8 channel carotid coil, 5 heart phases, FOV 80x80x12 mm, isotropic voxel size 0.4 mm (non-interpolated), sense factor 2, Venc of 30 (ap), 30 (rl) and 70 (fh) cm/s, scantime 10 minutes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Vari...

متن کامل

4D MRI-based wall shear stress quantification in the carotid bifurcation: a validation study in volunteers using computational fluid dynamics

Background Remodeling of the vessel wall is associated with wall shear stress (WSS) magnitude (Malek, 1999). It has been suggested that local low or high WSS may respectively promote or prevent atherosclerotic lesions in the carotid vessel wall. The current procedure for WSS quantification is computational fluid dynamics (CFD), which is time-consuming and not always patient-specific. In the pas...

متن کامل

Visualization and Quantification of Regional Ventricular Wall and Blood Velocities by 3T 4D PC-MRI

Background Wall motion together with the development of intracavity pressure and inside shear stress cause synchronous myocardial contraction and relaxation, as well as blood flow. These variables are related to cardiovascular function and disease. Assessing regional wall velocities and blood flow may therefore provide quantitative information regarding abnormalities in wall contractility and a...

متن کامل

Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters.

Quantification of CINE phase contrast (PC)-MRI data is a challenging task because of the limited spatiotemporal resolution and signal-to-noise ratio (SNR). The method presented in this work combines B-spline interpolation and Green's theorem to provide optimized quantification of blood flow and vessel wall parameters. The B-spline model provided optimal derivatives of the measured three-directi...

متن کامل

Measurements of wall shear stress and aortic pulse wave velocity in swine with familial hypercholesterolemia.

PURPOSE To assess measurements of pulse wave velocity (PWV) and wall shear stress (WSS) in a swine model of atherosclerosis. MATERIALS AND METHODS Nine familial hypercholesterolemic (FH) swine with angioplasty balloon catheter-induced atherosclerotic lesions to the abdominal aorta (injured group) and 10 uninjured FH swine were evaluated with a 4D phase contrast (PC) magnetic resonance imaging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2012